The 43-Foot Vertical

Phil Salas - AD5X ad5x@arrl.net

Why a vertical?
Ground Losses and Antenna Efficiency
Why a 43 -foot vertical?
SWR-related coax and unun losses

- RF Voltages
- Matching Networks for 160- and 80-meters
-Building your own 43-foot vertical

Why Use a Vertical?

- Advantages
- Generally are inexpensive
- Relatively unobtrusive
- Self-Supporting
- Easy to ground mount
- Low angle of radiation
- Good DX performance
- Omni-directional (no rotator needed!)

Disadvantages

- Omnidirectional (no gain or F/B)
- Needs a good radial system for best performance

AD5 Ground Loss \& Antenna Efficiency

Radiation Resistance (Rr) is the "resistance" of the antenna such that the antenna will radiate all power delivered into this resistance.
Ground loss (Rg) is antenna efficiency-robbing loss resistance that looks like a voltage-divider to your transmitter output.

- Antenna Efficiency (\%) = $100 \times \mathrm{Rr} /(\mathrm{Rg}+\mathrm{Rr})$

Simple Calculations

- You can get very close to actual short antenna impedances using simple calculations.
- $R r=(\text { Actual length } \div 1 / 4 \text { wave length })^{2} \times 36$ ohms
- $\mathrm{Cpf}=3.5 \mathrm{pf} / \mathrm{ft} \times$ Actual length
-43-foot 160 meter examples
- $\mathrm{Rr}=43 / 128 \times 36=4 \mathrm{ohms}$
- EZNEC $=3$ ohms
- $C=3.5 \times 43=150.5 p f=-j 580$
- EZNEC = -j640 BUT VNA actually measured -j580
- Nearby objects add some stray capacitance

Efficiency Calculation

A $1 / 4$-wave vertical has a radiation resistance of 36 ohms.

- Assume 10 ohms of ground loss
- Probably a much better ground than most hams have
- Your SWR = 1.09:1
- $\mathrm{Rr}+\mathrm{Rg}=36+10=46$ ohms
- $\operatorname{SWR}=50 / 46=1.09$
- Your antenna efficiency is 78\%
- If you have a 100 watt transmitter, you will radiate 78 watts

Electrically Short Antennas have Low Radiation Resitance

- A Hustler 6BTV 80/40/30/20/15/10 meter vertical is 24 feet tall.

On 80 meters, it is only 0.092 wavelength long.

- Rr decreases approximately as $1 /$ length 2.
-So Rr is approximately 5 ohms.
- With 10 ohms ground loss, the efficiency is 33%
- Assumes no trap/inductor losses
- Now your 100 watt transmit signal results in only 33 watts being radiated.

A Butternut HF-9VX with TBR-160 160M loading coil is 26 feet tall.

On 160 meters, it is only 0.051 wavelength long.

- Rr decreases as 1/length².

So Rr is approximately 1.5 ohms.

- With 10 ohms ground loss, the efficiency is 13%
- Assumes no inductor/loading coil/matching losses
- Now your 100 watt transmit signal results in only 13 watts being radiated.

The 43-foot Vertical Antenna

Advantages

- Still can be self-supporting \& moderately unobtrusive
- Approximately $3 X$ higher radiation resistance than the typical trap or loaded vertical.
- No trap or loading coil losses to worry about
- Modest compromise SWR from 60-10 meters when fed with a 1:4 unun.
-Disadvantages
- Take-off angle is not optimum on $12 / 10$ meters
- More on this later)
- You need an in-shack tuner

43-foot SWR over Perfect Ground with 1:4 Unun at the Antenna

EZNEC Generated SWR Curve: 43-foot vertical over perfect ground with 1:4 unun Thanks to Dave Cuthbert WX7G

- SWR-related cable losses are fairly minimal.
- Refer to SWR-related cable loss curves in the ARRL Handbook \& ARRL Antenna Book
- SWR over real ground is better
- My worst case SWR is 5:1 on 20 meters
\downarrow vs EZNEC calculated 6.5:1 over perfect ground
$\downarrow 60$ feet LMR-400 SWR-related coax losses: 0.4 dB on 20 meters
A couple of references
- Dave Cuthbert WX7G: "The 43' Vertical -- a Theoretical Analysis", www.eham.net/articles/21272.
- W. Griffith W5CSU "The Truth About the Vertical Antenna", May 1952 QST
- This antenna has been around a long time!

43-Foot Antenna Efficiency

- The Hustler 6BTV on 40 meters
- The 24 -foot Hustler is 0.188 wavelengths long
- Hustler $\mathrm{Rr}=20$ ohms
- Efficiency $=67 \%$ (assumes $\mathrm{Rg}=10 \Omega$ \& no coil losses)
- Note: There are multiple inductors (traps) in-line on 40 meters
- The 43-foot vertical on 40 meters
- Antenna is 0.34 wavelengths long
- $\mathrm{Rr}=65$ ohms
- Efficiency $=87 \%$ (with $\mathrm{Rg}=10 \Omega$ with no coils/traps)

43-foot Antenn

- But you can build your own (we live close to Texas Towers!)
- High take-off angle above 15 meters
- DX performance $\geq 1 / 4$-wave vertical 60-15 meters, but 5 dB down from 10 meter $1 / 4$-wave vertical at 10 degree take off angle (but higher Rr compensates some)
\rightarrow Really needs base matching on 160/80-meters
- Regardless of what the 43-foot antenna vendors say
- Example: With Rg = 10 2 ,
- 160 Meter SWR = 324:1, 80 Meter SWR = 41:1 Matching \& Coax Losses

Some 43-foot antenna vendors claim the antenna can be matched from 160-10 meters with your in-shack tuner. One vendor says to use 150 feet of RG-213 for best allband operation of the 43 -foot antenna (so you can tune from the tuner in your shack). Another vendor says to ADD 150 feet of RG-213 to your cable run.
The typical 160 meter base impedance of a 43-foot antenna with the $1: 4$ UNUN is $2-\mathrm{j} 183.150$ feet of coax transforms this to a matchable $38+j 180$ at the shack.

- But the antenna SWR is ~ 150:1 resulting in 12dB (two Sunits) of coax losses due to the SWR at the antenna. Plus about $\geq 6 \mathrm{~dB}$ ground loss. Total loss $\sim 18 \mathrm{~dB}$.
- TX = 100W results in 2-watts radiated
- Add to this additional unun losses due to the severe mismatch, plus internal losses in your antenna tuner.
On 80 meters, SWR-related coax cable loss (150 feet) is 4.7 dB , plus 3 dB ground loss. Total loss $\sim 8 \mathrm{~dB}$.
- TX = 100 watts results in 16 -watts radiated
- Again, don't forget to add in unun and tuner losses

Will shack matching work? Sure - because QRP works. But sometimes you want more than QRP power on 160 \& 80 meters!

- Use LMR-400 (I use ½-inch Andrew Heliax)
- Length should be that necessary for your antenna system
- Assume 60-feet of LMR-400 (the length from my shack to my 43-foot vertical).
- Worst-case SWR on 60-10 meters is on 20 meters where SWR = 5:1.
- SWR-related cable loss is only 0.39 dB , plus 0.27 dB matched cable loss $=0.66 \mathrm{~dB}$ total cable loss.
- FYI - With 150 feet of RG-213, the 20 meter SWR-related cable loss would be 1 dB , plus 0.8 dB matched cable loss
- Total cable loss $=1.8 \mathrm{~dB}$

160/80 Meter Matching

Difficult to match the 43-foot vertical on 160/80meters from your shack when low-loss coax is used! The mismatch may be too great for most manual- or auto-antenna tuners (though adding coax can help the match as discussed earlier).

- But don't forget about the significant SWR-related losses also discussed earlier!
-The right thing to do is to match the antenna directly at the base on 160- and 80-meters.
This virtually eliminates SWR-related coax and unun losses, reduces antenna tuner losses, and makes final matching from the shack very easy.

Autotuner at antenna base

- Autotuner needs > 50uHy for 160 meter matching.
- Most autotuners will match 80-10 meters.
- Evaluated CG-3000, CG-5000, MFJ-927 and SG-230
- Only SG-230 has enough inductance to tune 160 meters, but you're limited to 200 watts PEP
- MFJ-927 will tune 160 meters with external coil (see my website), but again you're limited to 200 watts PEP.
- CG-3000/5000 claim enough inductance to tune 160 meters, but they don't!
- Relay-switched or manual tuner at antenna base
- My preference is the relay-switched matching unit

First A Word About RF Voltages

An electrically short antenna has high capacitive reactance. This WILL cause high RF voltages across a matching network.
Example: Assume 1500 watts and a perfect ground system $(R g=0)$ on 160 meters. In this case all power is delivered to Rr .

$$
\begin{aligned}
& I=V(1500 / 3)=22.4 \mathrm{amps} \mathrm{rms} \\
& |Z|=\sqrt{ }\left(3^{2}+600^{2}\right)=600 \\
& \text { So, Vrms }=22.4 \times 600=13,440 \\
& \text { and } V p k=19,007 \text { volts }
\end{aligned}
$$

RF Voltages (Cont.)

Example: Assume 1500 watts and $\mathrm{Rg}=10$ ohms on 160 meters. Now all power is delivered into Rr+Rg:
$\mathrm{I}=\sqrt{ }(1500 / 13)=10.74 \mathrm{amps} \mathrm{rms}$
$|Z|=\sqrt{ }\left(13^{2}+600^{2}\right)=600.1$
So, Vrms $=10.74 \times 600.1=6,445$
And Vpk $=9,115$ volts

My Case: 600 watt amplifier (ALS-600).
$I=\sqrt{ }(600 / 13)=6.8 \mathrm{amps} \mathrm{rms}$
So, Vrms $=6.8 \times 600.1=4,081$
Vpk $=5,770$ volts RF Voltages (Cont.)

- For switched matching networks, switches or relays must have high breakdown voltage ratings.
- For relays:
- Contact-to-contact (Put contacts in series to increase breakdown voltage)
- Contact-to-coil
- Two relays:
- Array Solutions RF-10 DPDT Relay good for about 500 watts
- 1.7 KV peak contact-to-contact breakdown voltage
- 3.1KV peak contact-to-coil breakdown voltage
- Array Solutions RF-15 3PDT Relay good for full legal limit if properly applied.
- 3.1KV peak contact-to-contact breakdown voltage
- 5.3 KV peak contact-to-coil breakdown voltage

160- \& 80-Meter Matching

- Three matching units were built
- See www.ad5x.com for more details
-The first uses a large T400A-2 toroid
- Must be manually inserted and 160/80 Meters selected with straps
- The second adds relays for remote switching
- Remotely switchable for 160-, 80-, or 60-10 Meters
-The third uses an air-core inductor and relays
- OK OK - so I like to keep tinkering!!
- But this is the best solution (lowest inductor losses)

Toroid Matching Solution

Fits into a 6x6x4" electrical box from Lowes

Richardson, Texas

AD5 ${ }^{\text {E }}$ \# : Toroid Matching Solution

How well does it work?

AD5

Fits in $8 \times 8 \times 4$ " electrical box from Lowes/Home Depot.

AD5

AD5 \#3: Switchable Matching Solution

Fits in $8 \times 8 \times 4$ " electrical box from Lowes/Home

Figure 6: 160/80 Meter Impedance Matching Network

AD5 $=$ \#3 Switchable Matching Solution

Phil Salas - AD5X

AD5 $=$
 Which Solution Is For You?

If you run high power, the air-core inductor solution gives the lowest losses (Inductor $Q>400$). However, toroid dissipation is not an issue at lower powers as toroid heating increases linearly with power. Example:

1500 watts: Toroid dissipates ~240 watts 750 watts: Toroid dissipates ~ 120 watts.

Build your own 43-Foot Vertical

Aluminum Tubing from Texas Towers:

- 2 "ODx0.120"x6' = \$33.00
- 1.750"ODx0.058x6' = \$16.80
- 1.625"ODx0.058x6' = \$15.30
- 1.500"ODx0.058x6' = \$13.50
- 1.375 "ODx0.058x6' $=\$ 12.30$
- 1.250"ODx0.058x6' = \$11.10
- 1.125"ODx0.058x6' = \$ 9.90
- 1.000"ODx0.058x6' = \$9.00
- 0.875 "ODx0.058x6' $=\$ 8.40$
- 0.750 "ODx0.058x6' = $\$ 7.80$

Total ~ \$130.00 + Tax

+ 9 SS hose clamps.
Probably around \$140 total

Note: Prices will change with time!

AD5X Build Your Own Base Mount

Base mount (Cont.)

- Base mount doesn't need to be tilt-over
- And it doesn't need to support the antenna if you can use your house or a fence for support.
- My solution:

Figure 1: Alternative House or Fence Support

-12 bi-filar turns \#16 teflon insulated wire on two FT240-61 ferrite toroids

- Excellent wire substitute: McMaster 9634T701 2-cond HV wire (\$3/ft). This is 20KV-rated wire.

-Purchase MFJ-1965 (\$200)

Build Your Own Antenna - Alternatives

- 64-ft telescoping aluminum mast w/ slotted tubing \& hose clamps
- Telescope down to $43-\mathrm{ft}$. Good tubing overlap = robust antenna.

OR

- Purchase a self-supporting fiberglass 43-foot vertical from LDG (www.Idgelectronics.com) http://www.Idgelectronics.com/http://www.Idgelec tronics.com/
- At $\$ 200$ (including 1:4 unun), this is very attractive

THEN

Build your own base mount and unun.

- The more metal in the air, the better the antenna
- Radiation resistance increases as the square of the length change.
- Increased radiation resistance improves antenna efficiency over real ground.
A 43-foot antenna is very good for 60-10 meters
- A 43-foot antenna needs base matching to provide good results on 160- and 80-meters.
- Detailed matching network details at www.ad5x.com
- MFJ Enterprises
- 404-0669 coil, 10-10989D unun
- Array Solutions
- RF-10, RF-15 relays
- Texas Towers
- Aluminum tubing
- AutoZone
- Stainless-steel muffler/hose clamps
- Lowes/Home Depot
- Junction boxes, wire, hardware, Teflon ${ }^{\text {TM }}$ or glass tape, fencepost clamps, copper pipe, PVC adapters
- CWS Bytemark
- FT240-61 (CWS F-240-61), FT400A-2 (CWS T400-2D)

